MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. EN-MC21210 Magnesium

8090 aluminum belongs to the aluminum alloys classification, while EN-MC21210 magnesium belongs to the magnesium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is EN-MC21210 magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
44
Elongation at Break, % 3.5 to 13
14
Fatigue Strength, MPa 91 to 140
70
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
17
Tensile Strength: Ultimate (UTS), MPa 340 to 490
190
Tensile Strength: Yield (Proof), MPa 210 to 420
90

Thermal Properties

Latent Heat of Fusion, J/g 400
350
Maximum Temperature: Mechanical, °C 190
100
Melting Completion (Liquidus), °C 660
600
Melting Onset (Solidus), °C 600
570
Specific Heat Capacity, J/kg-K 960
1000
Thermal Conductivity, W/m-K 95 to 160
120
Thermal Expansion, µm/m-K 24
27

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
24
Electrical Conductivity: Equal Weight (Specific), % IACS 66
130

Otherwise Unclassified Properties

Base Metal Price, % relative 18
12
Density, g/cm3 2.7
1.6
Embodied Carbon, kg CO2/kg material 8.6
24
Embodied Energy, MJ/kg 170
160
Embodied Water, L/kg 1160
980

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
22
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
92
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
72
Strength to Weight: Axial, points 34 to 49
32
Strength to Weight: Bending, points 39 to 50
44
Thermal Diffusivity, mm2/s 36 to 60
76
Thermal Shock Resistance, points 15 to 22
11

Alloy Composition

Aluminum (Al), % 93 to 98.4
1.6 to 2.6
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 1.0 to 1.6
0 to 0.010
Iron (Fe), % 0 to 0.3
0 to 0.0050
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
96.3 to 98.3
Manganese (Mn), % 0 to 0.1
0.1 to 0.7
Nickel (Ni), % 0
0 to 0.0020
Silicon (Si), % 0 to 0.2
0 to 0.1
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0 to 0.2
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0
0 to 0.010