MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. Nickel 333

8090 aluminum belongs to the aluminum alloys classification, while nickel 333 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is nickel 333.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
210
Elongation at Break, % 3.5 to 13
34
Fatigue Strength, MPa 91 to 140
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
81
Tensile Strength: Ultimate (UTS), MPa 340 to 490
630
Tensile Strength: Yield (Proof), MPa 210 to 420
270

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 190
1010
Melting Completion (Liquidus), °C 660
1460
Melting Onset (Solidus), °C 600
1410
Specific Heat Capacity, J/kg-K 960
450
Thermal Conductivity, W/m-K 95 to 160
11
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 66
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 18
55
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 8.6
8.5
Embodied Energy, MJ/kg 170
120
Embodied Water, L/kg 1160
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
170
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 34 to 49
21
Strength to Weight: Bending, points 39 to 50
19
Thermal Diffusivity, mm2/s 36 to 60
2.9
Thermal Shock Resistance, points 15 to 22
16

Alloy Composition

Aluminum (Al), % 93 to 98.4
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.1
24 to 27
Cobalt (Co), % 0
2.5 to 4.0
Copper (Cu), % 1.0 to 1.6
0
Iron (Fe), % 0 to 0.3
9.3 to 24.5
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0
44 to 48
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
2.5 to 4.0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0