MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. Nickel 685

8090 aluminum belongs to the aluminum alloys classification, while nickel 685 belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is nickel 685.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 3.5 to 13
17
Fatigue Strength, MPa 91 to 140
470
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
77
Tensile Strength: Ultimate (UTS), MPa 340 to 490
1250
Tensile Strength: Yield (Proof), MPa 210 to 420
850

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 190
1000
Melting Completion (Liquidus), °C 660
1380
Melting Onset (Solidus), °C 600
1330
Specific Heat Capacity, J/kg-K 960
460
Thermal Conductivity, W/m-K 95 to 160
13
Thermal Expansion, µm/m-K 24
12

Otherwise Unclassified Properties

Base Metal Price, % relative 18
75
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 8.6
10
Embodied Energy, MJ/kg 170
140
Embodied Water, L/kg 1160
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
190
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
1820
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 34 to 49
42
Strength to Weight: Bending, points 39 to 50
31
Thermal Diffusivity, mm2/s 36 to 60
3.3
Thermal Shock Resistance, points 15 to 22
37

Alloy Composition

Aluminum (Al), % 93 to 98.4
1.2 to 1.6
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0.030 to 0.1
Chromium (Cr), % 0 to 0.1
18 to 21
Cobalt (Co), % 0
12 to 15
Copper (Cu), % 1.0 to 1.6
0 to 0.5
Iron (Fe), % 0 to 0.3
0 to 2.0
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 5.0
Nickel (Ni), % 0
49.6 to 62.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
2.8 to 3.3
Zinc (Zn), % 0 to 0.25
0.020 to 0.12
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0