MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. Nickel 689

8090 aluminum belongs to the aluminum alloys classification, while nickel 689 belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is nickel 689.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
210
Elongation at Break, % 3.5 to 13
23
Fatigue Strength, MPa 91 to 140
420
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
80
Tensile Strength: Ultimate (UTS), MPa 340 to 490
1250
Tensile Strength: Yield (Proof), MPa 210 to 420
690

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 190
990
Melting Completion (Liquidus), °C 660
1440
Melting Onset (Solidus), °C 600
1390
Specific Heat Capacity, J/kg-K 960
450
Thermal Expansion, µm/m-K 24
12

Otherwise Unclassified Properties

Base Metal Price, % relative 18
70
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 8.6
11
Embodied Energy, MJ/kg 170
150
Embodied Water, L/kg 1160
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
240
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
1170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 34 to 49
41
Strength to Weight: Bending, points 39 to 50
30
Thermal Shock Resistance, points 15 to 22
35

Alloy Composition

Aluminum (Al), % 93 to 98.4
0.75 to 1.3
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0.1 to 0.2
Chromium (Cr), % 0 to 0.1
18 to 20
Cobalt (Co), % 0
9.0 to 11
Copper (Cu), % 1.0 to 1.6
0
Iron (Fe), % 0 to 0.3
0 to 5.0
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
0 to 0.5
Molybdenum (Mo), % 0
9.0 to 10.5
Nickel (Ni), % 0
48.3 to 60.9
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
2.3 to 2.8
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0