MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. SAE-AISI 5140 Steel

8090 aluminum belongs to the aluminum alloys classification, while SAE-AISI 5140 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is SAE-AISI 5140 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 3.5 to 13
12 to 29
Fatigue Strength, MPa 91 to 140
220 to 570
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Tensile Strength: Ultimate (UTS), MPa 340 to 490
560 to 970
Tensile Strength: Yield (Proof), MPa 210 to 420
290 to 840

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
420
Melting Completion (Liquidus), °C 660
1460
Melting Onset (Solidus), °C 600
1420
Specific Heat Capacity, J/kg-K 960
470
Thermal Conductivity, W/m-K 95 to 160
45
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 66
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 18
2.1
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.6
1.4
Embodied Energy, MJ/kg 170
19
Embodied Water, L/kg 1160
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
76 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
220 to 1880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 34 to 49
20 to 34
Strength to Weight: Bending, points 39 to 50
19 to 28
Thermal Diffusivity, mm2/s 36 to 60
12
Thermal Shock Resistance, points 15 to 22
16 to 29

Alloy Composition

Aluminum (Al), % 93 to 98.4
0
Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0 to 0.1
0.7 to 0.9
Copper (Cu), % 1.0 to 1.6
0
Iron (Fe), % 0 to 0.3
97.3 to 98.1
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
0.7 to 0.9
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.2
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0