MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. SAE-AISI H12 Steel

8090 aluminum belongs to the aluminum alloys classification, while SAE-AISI H12 steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is SAE-AISI H12 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
75
Tensile Strength: Ultimate (UTS), MPa 340 to 490
690 to 1850

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Melting Completion (Liquidus), °C 660
1480
Melting Onset (Solidus), °C 600
1440
Specific Heat Capacity, J/kg-K 960
470
Thermal Conductivity, W/m-K 95 to 160
36
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
8.3
Electrical Conductivity: Equal Weight (Specific), % IACS 66
9.5

Otherwise Unclassified Properties

Base Metal Price, % relative 18
9.0
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.6
2.9
Embodied Energy, MJ/kg 170
41
Embodied Water, L/kg 1160
76

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 34 to 49
24 to 65
Strength to Weight: Bending, points 39 to 50
22 to 42
Thermal Diffusivity, mm2/s 36 to 60
9.8
Thermal Shock Resistance, points 15 to 22
22 to 60

Alloy Composition

Aluminum (Al), % 93 to 98.4
0
Carbon (C), % 0
0.3 to 0.4
Chromium (Cr), % 0 to 0.1
4.8 to 5.5
Copper (Cu), % 1.0 to 1.6
0 to 0.25
Iron (Fe), % 0 to 0.3
87.8 to 91.7
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
0.2 to 0.5
Molybdenum (Mo), % 0
1.3 to 1.8
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0.8 to 1.2
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
1.0 to 1.7
Vanadium (V), % 0
0 to 0.5
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0