MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. SAE-AISI H22 Steel

8090 aluminum belongs to the aluminum alloys classification, while SAE-AISI H22 steel belongs to the iron alloys. There are 21 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is SAE-AISI H22 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
77
Tensile Strength: Ultimate (UTS), MPa 340 to 490
700 to 1920

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Melting Completion (Liquidus), °C 660
1670
Melting Onset (Solidus), °C 600
1620
Specific Heat Capacity, J/kg-K 960
440
Thermal Conductivity, W/m-K 95 to 160
31
Thermal Expansion, µm/m-K 24
12

Otherwise Unclassified Properties

Base Metal Price, % relative 18
28
Density, g/cm3 2.7
8.7
Embodied Carbon, kg CO2/kg material 8.6
4.9
Embodied Energy, MJ/kg 170
73
Embodied Water, L/kg 1160
72

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
22
Strength to Weight: Axial, points 34 to 49
22 to 61
Strength to Weight: Bending, points 39 to 50
20 to 39
Thermal Diffusivity, mm2/s 36 to 60
8.2
Thermal Shock Resistance, points 15 to 22
22 to 60

Alloy Composition

Aluminum (Al), % 93 to 98.4
0
Carbon (C), % 0
0.3 to 0.4
Chromium (Cr), % 0 to 0.1
1.8 to 3.8
Copper (Cu), % 1.0 to 1.6
0 to 0.25
Iron (Fe), % 0 to 0.3
82.2 to 87.4
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
0.15 to 0.4
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0.15 to 0.4
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
10 to 11.8
Vanadium (V), % 0
0.25 to 0.5
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0