MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. C14510 Copper

8090 aluminum belongs to the aluminum alloys classification, while C14510 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is C14510 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
120
Elongation at Break, % 3.5 to 13
9.1 to 9.6
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 25
43
Tensile Strength: Ultimate (UTS), MPa 340 to 490
300 to 320
Tensile Strength: Yield (Proof), MPa 210 to 420
230 to 250

Thermal Properties

Latent Heat of Fusion, J/g 400
210
Maximum Temperature: Mechanical, °C 190
200
Melting Completion (Liquidus), °C 660
1080
Melting Onset (Solidus), °C 600
1050
Specific Heat Capacity, J/kg-K 960
390
Thermal Conductivity, W/m-K 95 to 160
360
Thermal Expansion, µm/m-K 24
17

Otherwise Unclassified Properties

Base Metal Price, % relative 18
33
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.6
2.6
Embodied Energy, MJ/kg 170
42
Embodied Water, L/kg 1160
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
25 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
230 to 280
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 34 to 49
9.2 to 10
Strength to Weight: Bending, points 39 to 50
11 to 12
Thermal Diffusivity, mm2/s 36 to 60
100
Thermal Shock Resistance, points 15 to 22
11 to 12

Alloy Composition

Aluminum (Al), % 93 to 98.4
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 1.0 to 1.6
99.15 to 99.69
Iron (Fe), % 0 to 0.3
0
Lead (Pb), % 0
0 to 0.050
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
0
Phosphorus (P), % 0
0.010 to 0.030
Silicon (Si), % 0 to 0.2
0
Tellurium (Te), % 0
0.3 to 0.7
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0