MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. C15500 Copper

8090 aluminum belongs to the aluminum alloys classification, while C15500 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is C15500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
120
Elongation at Break, % 3.5 to 13
3.0 to 37
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 25
43
Tensile Strength: Ultimate (UTS), MPa 340 to 490
280 to 550
Tensile Strength: Yield (Proof), MPa 210 to 420
130 to 530

Thermal Properties

Latent Heat of Fusion, J/g 400
210
Maximum Temperature: Mechanical, °C 190
200
Melting Completion (Liquidus), °C 660
1080
Melting Onset (Solidus), °C 600
1080
Specific Heat Capacity, J/kg-K 960
390
Thermal Conductivity, W/m-K 95 to 160
350
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
90
Electrical Conductivity: Equal Weight (Specific), % IACS 66
91

Otherwise Unclassified Properties

Base Metal Price, % relative 18
33
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.6
2.7
Embodied Energy, MJ/kg 170
42
Embodied Water, L/kg 1160
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
15 to 84
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
72 to 1210
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 34 to 49
8.6 to 17
Strength to Weight: Bending, points 39 to 50
11 to 17
Thermal Diffusivity, mm2/s 36 to 60
100
Thermal Shock Resistance, points 15 to 22
9.8 to 20

Alloy Composition

Aluminum (Al), % 93 to 98.4
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 1.0 to 1.6
99.75 to 99.853
Iron (Fe), % 0 to 0.3
0
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0.080 to 0.13
Manganese (Mn), % 0 to 0.1
0
Phosphorus (P), % 0
0.040 to 0.080
Silicon (Si), % 0 to 0.2
0
Silver (Ag), % 0
0.027 to 0.1
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0
0 to 0.2