MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. C81400 Copper

8090 aluminum belongs to the aluminum alloys classification, while C81400 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is C81400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
120
Elongation at Break, % 3.5 to 13
11
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 25
41
Tensile Strength: Ultimate (UTS), MPa 340 to 490
370
Tensile Strength: Yield (Proof), MPa 210 to 420
250

Thermal Properties

Latent Heat of Fusion, J/g 400
210
Maximum Temperature: Mechanical, °C 190
200
Melting Completion (Liquidus), °C 660
1090
Melting Onset (Solidus), °C 600
1070
Specific Heat Capacity, J/kg-K 960
390
Thermal Conductivity, W/m-K 95 to 160
260
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
60
Electrical Conductivity: Equal Weight (Specific), % IACS 66
61

Otherwise Unclassified Properties

Base Metal Price, % relative 18
33
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.6
2.8
Embodied Energy, MJ/kg 170
45
Embodied Water, L/kg 1160
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
36
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
260
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 34 to 49
11
Strength to Weight: Bending, points 39 to 50
13
Thermal Diffusivity, mm2/s 36 to 60
75
Thermal Shock Resistance, points 15 to 22
13

Alloy Composition

Aluminum (Al), % 93 to 98.4
0
Beryllium (Be), % 0
0.020 to 0.1
Chromium (Cr), % 0 to 0.1
0.6 to 1.0
Copper (Cu), % 1.0 to 1.6
98.4 to 99.38
Iron (Fe), % 0 to 0.3
0
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
0
Silicon (Si), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0
0 to 0.5