MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. N08028 Stainless Steel

8090 aluminum belongs to the aluminum alloys classification, while N08028 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is N08028 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 3.5 to 13
45
Fatigue Strength, MPa 91 to 140
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
80
Tensile Strength: Ultimate (UTS), MPa 340 to 490
570
Tensile Strength: Yield (Proof), MPa 210 to 420
240

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 660
1420
Melting Onset (Solidus), °C 600
1370
Specific Heat Capacity, J/kg-K 960
470
Thermal Conductivity, W/m-K 95 to 160
12
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 18
37
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.6
6.4
Embodied Energy, MJ/kg 170
89
Embodied Water, L/kg 1160
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
210
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 34 to 49
19
Strength to Weight: Bending, points 39 to 50
19
Thermal Diffusivity, mm2/s 36 to 60
3.2
Thermal Shock Resistance, points 15 to 22
12

Alloy Composition

Aluminum (Al), % 93 to 98.4
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
26 to 28
Copper (Cu), % 1.0 to 1.6
0.6 to 1.4
Iron (Fe), % 0 to 0.3
29 to 40.4
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
0 to 2.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
30 to 34
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0