MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. S20910 Stainless Steel

8090 aluminum belongs to the aluminum alloys classification, while S20910 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is S20910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 3.5 to 13
14 to 39
Fatigue Strength, MPa 91 to 140
310 to 460
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
79
Tensile Strength: Ultimate (UTS), MPa 340 to 490
780 to 940
Tensile Strength: Yield (Proof), MPa 210 to 420
430 to 810

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 190
1080
Melting Completion (Liquidus), °C 660
1420
Melting Onset (Solidus), °C 600
1380
Specific Heat Capacity, J/kg-K 960
480
Thermal Conductivity, W/m-K 95 to 160
13
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 18
22
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.6
4.8
Embodied Energy, MJ/kg 170
68
Embodied Water, L/kg 1160
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
120 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
460 to 1640
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 34 to 49
28 to 33
Strength to Weight: Bending, points 39 to 50
24 to 27
Thermal Diffusivity, mm2/s 36 to 60
3.6
Thermal Shock Resistance, points 15 to 22
17 to 21

Alloy Composition

Aluminum (Al), % 93 to 98.4
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0 to 0.1
20.5 to 23.5
Copper (Cu), % 1.0 to 1.6
0
Iron (Fe), % 0 to 0.3
52.1 to 62.1
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
4.0 to 6.0
Molybdenum (Mo), % 0
1.5 to 3.0
Nickel (Ni), % 0
11.5 to 13.5
Niobium (Nb), % 0
0.1 to 0.3
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0
0.1 to 0.3
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0