MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. S35140 Stainless Steel

8090 aluminum belongs to the aluminum alloys classification, while S35140 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is S35140 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 3.5 to 13
34
Fatigue Strength, MPa 91 to 140
250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
78
Tensile Strength: Ultimate (UTS), MPa 340 to 490
690
Tensile Strength: Yield (Proof), MPa 210 to 420
310

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 660
1420
Melting Onset (Solidus), °C 600
1370
Specific Heat Capacity, J/kg-K 960
470
Thermal Conductivity, W/m-K 95 to 160
14
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 66
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 18
31
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.6
5.5
Embodied Energy, MJ/kg 170
78
Embodied Water, L/kg 1160
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
190
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 34 to 49
24
Strength to Weight: Bending, points 39 to 50
22
Thermal Diffusivity, mm2/s 36 to 60
3.7
Thermal Shock Resistance, points 15 to 22
16

Alloy Composition

Aluminum (Al), % 93 to 98.4
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.1
20 to 22
Copper (Cu), % 1.0 to 1.6
0
Iron (Fe), % 0 to 0.3
44.1 to 52.7
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
1.0 to 3.0
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0
25 to 27
Niobium (Nb), % 0
0.25 to 0.75
Nitrogen (N), % 0
0.080 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.2
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0