MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. S35315 Stainless Steel

8090 aluminum belongs to the aluminum alloys classification, while S35315 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is S35315 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 3.5 to 13
46
Fatigue Strength, MPa 91 to 140
280
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
78
Tensile Strength: Ultimate (UTS), MPa 340 to 490
740
Tensile Strength: Yield (Proof), MPa 210 to 420
300

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 660
1370
Melting Onset (Solidus), °C 600
1330
Specific Heat Capacity, J/kg-K 960
480
Thermal Conductivity, W/m-K 95 to 160
12
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 66
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 18
34
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.6
5.7
Embodied Energy, MJ/kg 170
81
Embodied Water, L/kg 1160
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
270
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
230
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 34 to 49
26
Strength to Weight: Bending, points 39 to 50
23
Thermal Diffusivity, mm2/s 36 to 60
3.1
Thermal Shock Resistance, points 15 to 22
17

Alloy Composition

Aluminum (Al), % 93 to 98.4
0
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.030 to 0.1
Chromium (Cr), % 0 to 0.1
24 to 26
Copper (Cu), % 1.0 to 1.6
0
Iron (Fe), % 0 to 0.3
33.6 to 40.6
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Nickel (Ni), % 0
34 to 36
Nitrogen (N), % 0
0.12 to 0.18
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
1.2 to 2.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0