MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. S39274 Stainless Steel

8090 aluminum belongs to the aluminum alloys classification, while S39274 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is S39274 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
210
Elongation at Break, % 3.5 to 13
17
Fatigue Strength, MPa 91 to 140
380
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 25
81
Tensile Strength: Ultimate (UTS), MPa 340 to 490
900
Tensile Strength: Yield (Proof), MPa 210 to 420
620

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 660
1480
Melting Onset (Solidus), °C 600
1430
Specific Heat Capacity, J/kg-K 960
470
Thermal Conductivity, W/m-K 95 to 160
16
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 66
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 18
24
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.6
4.3
Embodied Energy, MJ/kg 170
60
Embodied Water, L/kg 1160
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
140
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
940
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 34 to 49
32
Strength to Weight: Bending, points 39 to 50
26
Thermal Diffusivity, mm2/s 36 to 60
4.2
Thermal Shock Resistance, points 15 to 22
25

Alloy Composition

Aluminum (Al), % 93 to 98.4
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
24 to 26
Copper (Cu), % 1.0 to 1.6
0.2 to 0.8
Iron (Fe), % 0 to 0.3
57 to 65.6
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0.24 to 0.32
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0 to 0.8
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
1.5 to 2.5
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0