MakeItFrom.com
Menu (ESC)

8176 Aluminum vs. EN 1.4423 Stainless Steel

8176 aluminum belongs to the aluminum alloys classification, while EN 1.4423 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8176 aluminum and the bottom bar is EN 1.4423 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 15
17
Fatigue Strength, MPa 59
380
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 70
520
Tensile Strength: Ultimate (UTS), MPa 160
850
Tensile Strength: Yield (Proof), MPa 95
630

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 170
780
Melting Completion (Liquidus), °C 660
1460
Melting Onset (Solidus), °C 650
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
16
Thermal Expansion, µm/m-K 24
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 200
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
14
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.2
3.2
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1190
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
130
Resilience: Unit (Modulus of Resilience), kJ/m3 66
1000
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 16
30
Strength to Weight: Bending, points 24
25
Thermal Diffusivity, mm2/s 93
4.3
Thermal Shock Resistance, points 7.0
31

Alloy Composition

Aluminum (Al), % 98.6 to 99.6
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
11 to 13
Copper (Cu), % 0
0.2 to 0.8
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0.4 to 1.0
73.8 to 80.5
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.3 to 2.8
Nickel (Ni), % 0
6.0 to 7.0
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.030 to 0.15
0 to 0.5
Sulfur (S), % 0
0 to 0.0030
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0