MakeItFrom.com
Menu (ESC)

ACI-ASTM CA15 Steel vs. EN 1.4005 Stainless Steel

Both ACI-ASTM CA15 steel and EN 1.4005 stainless steel are iron alloys. Their average alloy composition is basically identical. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA15 steel and the bottom bar is EN 1.4005 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21
13 to 21
Fatigue Strength, MPa 370
240 to 290
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Tensile Strength: Ultimate (UTS), MPa 700
630 to 750
Tensile Strength: Yield (Proof), MPa 570
370 to 500

Thermal Properties

Latent Heat of Fusion, J/g 280
270
Maximum Temperature: Corrosion, °C 390
390
Maximum Temperature: Mechanical, °C 750
760
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1500
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
30
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
7.0
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.0
2.0
Embodied Energy, MJ/kg 28
28
Embodied Water, L/kg 100
100

Common Calculations

PREN (Pitting Resistance) 14
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
90 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 820
350 to 650
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
23 to 27
Strength to Weight: Bending, points 23
21 to 24
Thermal Diffusivity, mm2/s 6.7
8.1
Thermal Shock Resistance, points 26
23 to 27

Alloy Composition

Carbon (C), % 0 to 0.15
0.060 to 0.15
Chromium (Cr), % 11.5 to 14
12 to 14
Iron (Fe), % 81.8 to 88.5
82.4 to 87.8
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 0 to 0.5
0 to 0.6
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.5
0 to 1.0
Sulfur (S), % 0 to 0.040
0.15 to 0.35