MakeItFrom.com
Menu (ESC)

ACI-ASTM CA15 Steel vs. EN 1.7725 Steel

Both ACI-ASTM CA15 steel and EN 1.7725 steel are iron alloys. They have 88% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA15 steel and the bottom bar is EN 1.7725 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
250 to 300
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21
14
Fatigue Strength, MPa 370
390 to 550
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Tensile Strength: Ultimate (UTS), MPa 700
830 to 1000
Tensile Strength: Yield (Proof), MPa 570
610 to 860

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 750
440
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1500
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
39
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
2.9
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.0
1.8
Embodied Energy, MJ/kg 28
24
Embodied Water, L/kg 100
54

Common Calculations

PREN (Pitting Resistance) 14
2.8
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
110 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 820
980 to 1940
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 25
29 to 35
Strength to Weight: Bending, points 23
25 to 28
Thermal Diffusivity, mm2/s 6.7
11
Thermal Shock Resistance, points 26
24 to 29

Alloy Composition

Carbon (C), % 0 to 0.15
0.27 to 0.34
Chromium (Cr), % 11.5 to 14
1.3 to 1.7
Iron (Fe), % 81.8 to 88.5
95.7 to 97.5
Manganese (Mn), % 0 to 1.0
0.6 to 1.0
Molybdenum (Mo), % 0 to 0.5
0.3 to 0.5
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.5
0 to 0.6
Sulfur (S), % 0 to 0.040
0 to 0.030
Vanadium (V), % 0
0.050 to 0.15