MakeItFrom.com
Menu (ESC)

ACI-ASTM CA15M Steel vs. 6151 Aluminum

ACI-ASTM CA15M steel belongs to the iron alloys classification, while 6151 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CA15M steel and the bottom bar is 6151 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 20
1.1 to 5.7
Fatigue Strength, MPa 330
80 to 100
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 690
330 to 340
Tensile Strength: Yield (Proof), MPa 510
270 to 280

Thermal Properties

Latent Heat of Fusion, J/g 270
410
Maximum Temperature: Mechanical, °C 760
170
Melting Completion (Liquidus), °C 1450
650
Melting Onset (Solidus), °C 1410
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 27
170
Thermal Expansion, µm/m-K 10
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
45
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
150

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 2.1
8.2
Embodied Energy, MJ/kg 29
150
Embodied Water, L/kg 100
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
3.5 to 18
Resilience: Unit (Modulus of Resilience), kJ/m3 670
520 to 580
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 25
34
Strength to Weight: Bending, points 22
39
Thermal Diffusivity, mm2/s 7.2
70
Thermal Shock Resistance, points 25
15

Alloy Composition

Aluminum (Al), % 0
95.6 to 98.8
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 11.5 to 14
0.15 to 0.35
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 82.1 to 88.4
0 to 1.0
Magnesium (Mg), % 0
0.45 to 0.8
Manganese (Mn), % 0 to 1.0
0 to 0.2
Molybdenum (Mo), % 0.15 to 1.0
0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.65
0.6 to 1.2
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15