MakeItFrom.com
Menu (ESC)

ACI-ASTM CA15M Steel vs. EN 1.8865 Steel

Both ACI-ASTM CA15M steel and EN 1.8865 steel are iron alloys. They have 87% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA15M steel and the bottom bar is EN 1.8865 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
200
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 20
19
Fatigue Strength, MPa 330
340
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Tensile Strength: Ultimate (UTS), MPa 690
660
Tensile Strength: Yield (Proof), MPa 510
500

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 760
420
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 27
39
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
3.2
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.1
1.8
Embodied Energy, MJ/kg 29
24
Embodied Water, L/kg 100
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
120
Resilience: Unit (Modulus of Resilience), kJ/m3 670
670
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 25
23
Strength to Weight: Bending, points 22
21
Thermal Diffusivity, mm2/s 7.2
10
Thermal Shock Resistance, points 25
19

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.15
0 to 0.18
Chromium (Cr), % 11.5 to 14
0 to 1.0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 82.1 to 88.4
93.6 to 100
Manganese (Mn), % 0 to 1.0
0 to 1.7
Molybdenum (Mo), % 0.15 to 1.0
0 to 0.7
Nickel (Ni), % 0 to 1.0
0 to 1.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 0.65
0 to 0.6
Sulfur (S), % 0 to 0.040
0 to 0.0050
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.080
Zirconium (Zr), % 0
0 to 0.15