MakeItFrom.com
Menu (ESC)

ACI-ASTM CA15M Steel vs. C17000 Copper

ACI-ASTM CA15M steel belongs to the iron alloys classification, while C17000 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA15M steel and the bottom bar is C17000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 20
1.1 to 31
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
45
Tensile Strength: Ultimate (UTS), MPa 690
490 to 1310
Tensile Strength: Yield (Proof), MPa 510
160 to 1140

Thermal Properties

Latent Heat of Fusion, J/g 270
230
Maximum Temperature: Mechanical, °C 760
270
Melting Completion (Liquidus), °C 1450
980
Melting Onset (Solidus), °C 1410
870
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 27
110
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
22
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
22

Otherwise Unclassified Properties

Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 2.1
8.7
Embodied Energy, MJ/kg 29
140
Embodied Water, L/kg 100
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
4.2 to 390
Resilience: Unit (Modulus of Resilience), kJ/m3 670
110 to 5420
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 25
15 to 41
Strength to Weight: Bending, points 22
16 to 30
Thermal Diffusivity, mm2/s 7.2
32
Thermal Shock Resistance, points 25
17 to 45

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
1.6 to 1.8
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 11.5 to 14
0
Copper (Cu), % 0
96.3 to 98.2
Iron (Fe), % 82.1 to 88.4
0 to 0.4
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.15 to 1.0
0
Nickel (Ni), % 0 to 1.0
0.2 to 0.6
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.65
0 to 0.2
Sulfur (S), % 0 to 0.040
0
Residuals, % 0
0 to 0.5