MakeItFrom.com
Menu (ESC)

ACI-ASTM CA15M Steel vs. C85900 Brass

ACI-ASTM CA15M steel belongs to the iron alloys classification, while C85900 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA15M steel and the bottom bar is C85900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
85
Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 20
30
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 690
460
Tensile Strength: Yield (Proof), MPa 510
190

Thermal Properties

Latent Heat of Fusion, J/g 270
170
Maximum Temperature: Mechanical, °C 760
130
Melting Completion (Liquidus), °C 1450
830
Melting Onset (Solidus), °C 1410
790
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 27
89
Thermal Expansion, µm/m-K 10
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
25
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
28

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
24
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 2.1
2.9
Embodied Energy, MJ/kg 29
49
Embodied Water, L/kg 100
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
110
Resilience: Unit (Modulus of Resilience), kJ/m3 670
170
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 25
16
Strength to Weight: Bending, points 22
17
Thermal Diffusivity, mm2/s 7.2
29
Thermal Shock Resistance, points 25
16

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.6
Antimony (Sb), % 0
0 to 0.2
Boron (B), % 0
0 to 0.2
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 11.5 to 14
0
Copper (Cu), % 0
58 to 62
Iron (Fe), % 82.1 to 88.4
0 to 0.5
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 1.0
0 to 0.010
Molybdenum (Mo), % 0.15 to 1.0
0
Nickel (Ni), % 0 to 1.0
0 to 1.5
Phosphorus (P), % 0 to 0.040
0 to 0.010
Silicon (Si), % 0 to 0.65
0 to 0.25
Sulfur (S), % 0 to 0.040
0.1 to 0.65
Tin (Sn), % 0
0 to 1.5
Zinc (Zn), % 0
31 to 41
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.7