MakeItFrom.com
Menu (ESC)

ACI-ASTM CA15M Steel vs. C86300 Bronze

ACI-ASTM CA15M steel belongs to the iron alloys classification, while C86300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA15M steel and the bottom bar is C86300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
250
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 20
14
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
42
Tensile Strength: Ultimate (UTS), MPa 690
850
Tensile Strength: Yield (Proof), MPa 510
480

Thermal Properties

Latent Heat of Fusion, J/g 270
200
Maximum Temperature: Mechanical, °C 760
160
Melting Completion (Liquidus), °C 1450
920
Melting Onset (Solidus), °C 1410
890
Specific Heat Capacity, J/kg-K 480
420
Thermal Conductivity, W/m-K 27
35
Thermal Expansion, µm/m-K 10
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
23
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.1
3.0
Embodied Energy, MJ/kg 29
51
Embodied Water, L/kg 100
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
100
Resilience: Unit (Modulus of Resilience), kJ/m3 670
1030
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 25
30
Strength to Weight: Bending, points 22
25
Thermal Diffusivity, mm2/s 7.2
11
Thermal Shock Resistance, points 25
28

Alloy Composition

Aluminum (Al), % 0
5.0 to 7.5
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 11.5 to 14
0
Copper (Cu), % 0
60 to 66
Iron (Fe), % 82.1 to 88.4
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.0
2.5 to 5.0
Molybdenum (Mo), % 0.15 to 1.0
0
Nickel (Ni), % 0 to 1.0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.65
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0