MakeItFrom.com
Menu (ESC)

ACI-ASTM CA15M Steel vs. C96600 Copper

ACI-ASTM CA15M steel belongs to the iron alloys classification, while C96600 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA15M steel and the bottom bar is C96600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 20
7.0
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
52
Tensile Strength: Ultimate (UTS), MPa 690
760
Tensile Strength: Yield (Proof), MPa 510
480

Thermal Properties

Latent Heat of Fusion, J/g 270
240
Maximum Temperature: Mechanical, °C 760
280
Melting Completion (Liquidus), °C 1450
1180
Melting Onset (Solidus), °C 1410
1100
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 27
30
Thermal Expansion, µm/m-K 10
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
4.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
4.1

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
65
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.1
7.0
Embodied Energy, MJ/kg 29
100
Embodied Water, L/kg 100
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
47
Resilience: Unit (Modulus of Resilience), kJ/m3 670
830
Stiffness to Weight: Axial, points 14
8.7
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 25
24
Strength to Weight: Bending, points 22
21
Thermal Diffusivity, mm2/s 7.2
8.4
Thermal Shock Resistance, points 25
25

Alloy Composition

Beryllium (Be), % 0
0.4 to 0.7
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 11.5 to 14
0
Copper (Cu), % 0
63.5 to 69.8
Iron (Fe), % 82.1 to 88.4
0.8 to 1.1
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0.15 to 1.0
0
Nickel (Ni), % 0 to 1.0
29 to 33
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.65
0 to 0.15
Sulfur (S), % 0 to 0.040
0
Residuals, % 0
0 to 0.5