MakeItFrom.com
Menu (ESC)

ACI-ASTM CA28MWV Steel vs. EN 1.4317 Stainless Steel

Both ACI-ASTM CA28MWV steel and EN 1.4317 stainless steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA28MWV steel and the bottom bar is EN 1.4317 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 11
17
Fatigue Strength, MPa 470
380
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Tensile Strength: Ultimate (UTS), MPa 1080
860
Tensile Strength: Yield (Proof), MPa 870
630

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Maximum Temperature: Corrosion, °C 380
390
Maximum Temperature: Mechanical, °C 740
770
Melting Completion (Liquidus), °C 1470
1440
Melting Onset (Solidus), °C 1430
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 25
26
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.6
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 5.3
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 11
10
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.1
2.4
Embodied Energy, MJ/kg 44
33
Embodied Water, L/kg 100
110

Common Calculations

PREN (Pitting Resistance) 17
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
130
Resilience: Unit (Modulus of Resilience), kJ/m3 1920
1010
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 38
31
Strength to Weight: Bending, points 30
26
Thermal Diffusivity, mm2/s 6.6
7.0
Thermal Shock Resistance, points 40
30

Alloy Composition

Carbon (C), % 0.2 to 0.28
0 to 0.060
Chromium (Cr), % 11 to 12.5
12 to 13.5
Iron (Fe), % 81.4 to 85.8
78.7 to 84.5
Manganese (Mn), % 0.5 to 1.0
0 to 1.0
Molybdenum (Mo), % 0.9 to 1.3
0 to 0.7
Nickel (Ni), % 0.5 to 1.0
3.5 to 5.0
Phosphorus (P), % 0 to 0.030
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.025
Tungsten (W), % 0.9 to 1.3
0
Vanadium (V), % 0.2 to 0.3
0