MakeItFrom.com
Menu (ESC)

ACI-ASTM CA28MWV Steel vs. EN 1.4404 Stainless Steel

Both ACI-ASTM CA28MWV steel and EN 1.4404 stainless steel are iron alloys. They have 82% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA28MWV steel and the bottom bar is EN 1.4404 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 330
190 to 270
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 11
14 to 43
Fatigue Strength, MPa 470
220 to 320
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
78
Tensile Strength: Ultimate (UTS), MPa 1080
600 to 900
Tensile Strength: Yield (Proof), MPa 870
240 to 570

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Maximum Temperature: Corrosion, °C 380
410
Maximum Temperature: Mechanical, °C 740
950
Melting Completion (Liquidus), °C 1470
1440
Melting Onset (Solidus), °C 1430
1400
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 25
15
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.6
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 5.3
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
19
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 3.1
3.8
Embodied Energy, MJ/kg 44
52
Embodied Water, L/kg 100
150

Common Calculations

PREN (Pitting Resistance) 17
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 1920
140 to 800
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 38
21 to 32
Strength to Weight: Bending, points 30
20 to 26
Thermal Diffusivity, mm2/s 6.6
4.0
Thermal Shock Resistance, points 40
13 to 20

Alloy Composition

Carbon (C), % 0.2 to 0.28
0 to 0.030
Chromium (Cr), % 11 to 12.5
16.5 to 18.5
Iron (Fe), % 81.4 to 85.8
62.8 to 71.5
Manganese (Mn), % 0.5 to 1.0
0 to 2.0
Molybdenum (Mo), % 0.9 to 1.3
2.0 to 2.5
Nickel (Ni), % 0.5 to 1.0
10 to 13
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Tungsten (W), % 0.9 to 1.3
0
Vanadium (V), % 0.2 to 0.3
0