MakeItFrom.com
Menu (ESC)

ACI-ASTM CA28MWV Steel vs. C43500 Brass

ACI-ASTM CA28MWV steel belongs to the iron alloys classification, while C43500 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA28MWV steel and the bottom bar is C43500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 11
8.5 to 46
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
42
Tensile Strength: Ultimate (UTS), MPa 1080
320 to 530
Tensile Strength: Yield (Proof), MPa 870
120 to 480

Thermal Properties

Latent Heat of Fusion, J/g 270
190
Maximum Temperature: Mechanical, °C 740
160
Melting Completion (Liquidus), °C 1470
1000
Melting Onset (Solidus), °C 1430
970
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 25
120
Thermal Expansion, µm/m-K 10
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.6
28
Electrical Conductivity: Equal Weight (Specific), % IACS 5.3
30

Otherwise Unclassified Properties

Base Metal Price, % relative 11
28
Density, g/cm3 7.9
8.5
Embodied Carbon, kg CO2/kg material 3.1
2.7
Embodied Energy, MJ/kg 44
45
Embodied Water, L/kg 100
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
44 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 1920
65 to 1040
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 38
10 to 17
Strength to Weight: Bending, points 30
12 to 17
Thermal Diffusivity, mm2/s 6.6
37
Thermal Shock Resistance, points 40
11 to 18

Alloy Composition

Carbon (C), % 0.2 to 0.28
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
79 to 83
Iron (Fe), % 81.4 to 85.8
0 to 0.050
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0.5 to 1.0
0
Molybdenum (Mo), % 0.9 to 1.3
0
Nickel (Ni), % 0.5 to 1.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.6 to 1.2
Tungsten (W), % 0.9 to 1.3
0
Vanadium (V), % 0.2 to 0.3
0
Zinc (Zn), % 0
15.4 to 20.4
Residuals, % 0
0 to 0.3