MakeItFrom.com
Menu (ESC)

ACI-ASTM CA28MWV Steel vs. C72800 Copper-nickel

ACI-ASTM CA28MWV steel belongs to the iron alloys classification, while C72800 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA28MWV steel and the bottom bar is C72800 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 11
3.9 to 23
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Tensile Strength: Ultimate (UTS), MPa 1080
520 to 1270
Tensile Strength: Yield (Proof), MPa 870
250 to 1210

Thermal Properties

Latent Heat of Fusion, J/g 270
210
Maximum Temperature: Mechanical, °C 740
200
Melting Completion (Liquidus), °C 1470
1080
Melting Onset (Solidus), °C 1430
920
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 25
55
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.6
11
Electrical Conductivity: Equal Weight (Specific), % IACS 5.3
11

Otherwise Unclassified Properties

Base Metal Price, % relative 11
38
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 3.1
4.4
Embodied Energy, MJ/kg 44
68
Embodied Water, L/kg 100
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
37 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 1920
260 to 5650
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 38
17 to 40
Strength to Weight: Bending, points 30
16 to 30
Thermal Diffusivity, mm2/s 6.6
17
Thermal Shock Resistance, points 40
19 to 45

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Antimony (Sb), % 0
0 to 0.020
Bismuth (Bi), % 0
0 to 0.0010
Boron (B), % 0
0 to 0.0010
Carbon (C), % 0.2 to 0.28
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
78.3 to 82.8
Iron (Fe), % 81.4 to 85.8
0 to 0.5
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 0
0.0050 to 0.15
Manganese (Mn), % 0.5 to 1.0
0.050 to 0.3
Molybdenum (Mo), % 0.9 to 1.3
0
Nickel (Ni), % 0.5 to 1.0
9.5 to 10.5
Niobium (Nb), % 0
0.1 to 0.3
Phosphorus (P), % 0 to 0.030
0 to 0.0050
Silicon (Si), % 0 to 1.0
0 to 0.050
Sulfur (S), % 0 to 0.030
0 to 0.0025
Tin (Sn), % 0
7.5 to 8.5
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0.9 to 1.3
0
Vanadium (V), % 0.2 to 0.3
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.3