MakeItFrom.com
Menu (ESC)

ACI-ASTM CA28MWV Steel vs. C90200 Bronze

ACI-ASTM CA28MWV steel belongs to the iron alloys classification, while C90200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA28MWV steel and the bottom bar is C90200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 330
70
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 11
30
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
41
Tensile Strength: Ultimate (UTS), MPa 1080
260
Tensile Strength: Yield (Proof), MPa 870
110

Thermal Properties

Latent Heat of Fusion, J/g 270
200
Maximum Temperature: Mechanical, °C 740
180
Melting Completion (Liquidus), °C 1470
1050
Melting Onset (Solidus), °C 1430
880
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 25
62
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.6
13
Electrical Conductivity: Equal Weight (Specific), % IACS 5.3
13

Otherwise Unclassified Properties

Base Metal Price, % relative 11
34
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 3.1
3.3
Embodied Energy, MJ/kg 44
53
Embodied Water, L/kg 100
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
63
Resilience: Unit (Modulus of Resilience), kJ/m3 1920
55
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 38
8.3
Strength to Weight: Bending, points 30
10
Thermal Diffusivity, mm2/s 6.6
19
Thermal Shock Resistance, points 40
9.5

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0.2 to 0.28
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
91 to 94
Iron (Fe), % 81.4 to 85.8
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0.5 to 1.0
0
Molybdenum (Mo), % 0.9 to 1.3
0
Nickel (Ni), % 0.5 to 1.0
0 to 0.5
Phosphorus (P), % 0 to 0.030
0 to 0.050
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
6.0 to 8.0
Tungsten (W), % 0.9 to 1.3
0
Vanadium (V), % 0.2 to 0.3
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.6