MakeItFrom.com
Menu (ESC)

ACI-ASTM CA28MWV Steel vs. S43932 Stainless Steel

Both ACI-ASTM CA28MWV steel and S43932 stainless steel are iron alloys. They have a moderately high 93% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA28MWV steel and the bottom bar is S43932 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 330
160
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 11
25
Fatigue Strength, MPa 470
160
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
77
Tensile Strength: Ultimate (UTS), MPa 1080
460
Tensile Strength: Yield (Proof), MPa 870
230

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Maximum Temperature: Corrosion, °C 380
570
Maximum Temperature: Mechanical, °C 740
890
Melting Completion (Liquidus), °C 1470
1440
Melting Onset (Solidus), °C 1430
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 25
23
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.6
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 5.3
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 11
12
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 3.1
2.7
Embodied Energy, MJ/kg 44
40
Embodied Water, L/kg 100
120

Common Calculations

PREN (Pitting Resistance) 17
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
96
Resilience: Unit (Modulus of Resilience), kJ/m3 1920
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 38
17
Strength to Weight: Bending, points 30
17
Thermal Diffusivity, mm2/s 6.6
6.3
Thermal Shock Resistance, points 40
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Carbon (C), % 0.2 to 0.28
0 to 0.030
Chromium (Cr), % 11 to 12.5
17 to 19
Iron (Fe), % 81.4 to 85.8
76.7 to 83
Manganese (Mn), % 0.5 to 1.0
0 to 1.0
Molybdenum (Mo), % 0.9 to 1.3
0
Nickel (Ni), % 0.5 to 1.0
0 to 0.5
Niobium (Nb), % 0
0.2 to 0.75
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.75
Tungsten (W), % 0.9 to 1.3
0
Vanadium (V), % 0.2 to 0.3
0