MakeItFrom.com
Menu (ESC)

ACI-ASTM CA40 Steel vs. 2007 Aluminum

ACI-ASTM CA40 steel belongs to the iron alloys classification, while 2007 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CA40 steel and the bottom bar is 2007 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 10
5.6 to 8.0
Fatigue Strength, MPa 460
91 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 910
370 to 420
Tensile Strength: Yield (Proof), MPa 860
240 to 270

Thermal Properties

Latent Heat of Fusion, J/g 280
390
Maximum Temperature: Mechanical, °C 750
190
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1500
510
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 25
130
Thermal Expansion, µm/m-K 10
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
47
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
140

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
11
Density, g/cm3 7.7
3.1
Embodied Carbon, kg CO2/kg material 2.0
8.0
Embodied Energy, MJ/kg 28
150
Embodied Water, L/kg 100
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 1910
390 to 530
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
44
Strength to Weight: Axial, points 33
33 to 38
Strength to Weight: Bending, points 27
37 to 40
Thermal Diffusivity, mm2/s 6.7
48
Thermal Shock Resistance, points 33
16 to 19

Alloy Composition

Aluminum (Al), % 0
87.5 to 95
Bismuth (Bi), % 0
0 to 0.2
Carbon (C), % 0.2 to 0.4
0
Chromium (Cr), % 11.5 to 14
0 to 0.1
Copper (Cu), % 0
3.3 to 4.6
Iron (Fe), % 81.5 to 88.3
0 to 0.8
Lead (Pb), % 0
0.8 to 1.5
Magnesium (Mg), % 0
0.4 to 1.8
Manganese (Mn), % 0 to 1.0
0.5 to 1.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.0
0 to 0.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0 to 0.8
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 0.3