MakeItFrom.com
Menu (ESC)

ACI-ASTM CA40 Steel vs. 2117 Aluminum

ACI-ASTM CA40 steel belongs to the iron alloys classification, while 2117 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CA40 steel and the bottom bar is 2117 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 310
70
Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 10
26
Fatigue Strength, MPa 460
95
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 910
300
Tensile Strength: Yield (Proof), MPa 860
170

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Maximum Temperature: Mechanical, °C 750
220
Melting Completion (Liquidus), °C 1440
650
Melting Onset (Solidus), °C 1500
550
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 25
150
Thermal Expansion, µm/m-K 10
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
40
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
120

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
10
Density, g/cm3 7.7
3.0
Embodied Carbon, kg CO2/kg material 2.0
8.2
Embodied Energy, MJ/kg 28
150
Embodied Water, L/kg 100
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
64
Resilience: Unit (Modulus of Resilience), kJ/m3 1910
190
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 33
28
Strength to Weight: Bending, points 27
33
Thermal Diffusivity, mm2/s 6.7
59
Thermal Shock Resistance, points 33
12

Alloy Composition

Aluminum (Al), % 0
91 to 97.6
Carbon (C), % 0.2 to 0.4
0
Chromium (Cr), % 11.5 to 14
0 to 0.1
Copper (Cu), % 0
2.2 to 4.5
Iron (Fe), % 81.5 to 88.3
0 to 0.7
Magnesium (Mg), % 0
0.2 to 1.0
Manganese (Mn), % 0 to 1.0
0.4 to 1.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0.2 to 0.8
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15