MakeItFrom.com
Menu (ESC)

ACI-ASTM CA40 Steel vs. 380.0 Aluminum

ACI-ASTM CA40 steel belongs to the iron alloys classification, while 380.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CA40 steel and the bottom bar is 380.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 310
80
Elastic (Young's, Tensile) Modulus, GPa 190
74
Elongation at Break, % 10
3.0
Fatigue Strength, MPa 460
140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
28
Tensile Strength: Ultimate (UTS), MPa 910
320
Tensile Strength: Yield (Proof), MPa 860
160

Thermal Properties

Latent Heat of Fusion, J/g 280
510
Maximum Temperature: Mechanical, °C 750
170
Melting Completion (Liquidus), °C 1440
590
Melting Onset (Solidus), °C 1500
540
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 25
100
Thermal Expansion, µm/m-K 10
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
27
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
83

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
10
Density, g/cm3 7.7
2.9
Embodied Carbon, kg CO2/kg material 2.0
7.5
Embodied Energy, MJ/kg 28
140
Embodied Water, L/kg 100
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
8.0
Resilience: Unit (Modulus of Resilience), kJ/m3 1910
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
48
Strength to Weight: Axial, points 33
31
Strength to Weight: Bending, points 27
36
Thermal Diffusivity, mm2/s 6.7
40
Thermal Shock Resistance, points 33
14

Alloy Composition

Aluminum (Al), % 0
79.6 to 89.5
Carbon (C), % 0.2 to 0.4
0
Chromium (Cr), % 11.5 to 14
0
Copper (Cu), % 0
3.0 to 4.0
Iron (Fe), % 81.5 to 88.3
0 to 2.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0 to 0.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.0
0 to 0.5
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
7.5 to 9.5
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.35
Zinc (Zn), % 0
0 to 3.0
Residuals, % 0
0 to 0.5