MakeItFrom.com
Menu (ESC)

ACI-ASTM CA40 Steel vs. 5456 Aluminum

ACI-ASTM CA40 steel belongs to the iron alloys classification, while 5456 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CA40 steel and the bottom bar is 5456 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 10
11 to 18
Fatigue Strength, MPa 460
130 to 210
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 910
320 to 340
Tensile Strength: Yield (Proof), MPa 860
150 to 250

Thermal Properties

Latent Heat of Fusion, J/g 280
390
Maximum Temperature: Corrosion, °C 390
65
Maximum Temperature: Mechanical, °C 750
190
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1500
570
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 25
120
Thermal Expansion, µm/m-K 10
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
29
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
97

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.0
9.0
Embodied Energy, MJ/kg 28
150
Embodied Water, L/kg 100
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
33 to 46
Resilience: Unit (Modulus of Resilience), kJ/m3 1910
170 to 470
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 33
33 to 35
Strength to Weight: Bending, points 27
38 to 40
Thermal Diffusivity, mm2/s 6.7
48
Thermal Shock Resistance, points 33
14 to 15

Alloy Composition

Aluminum (Al), % 0
92 to 94.8
Carbon (C), % 0.2 to 0.4
0
Chromium (Cr), % 11.5 to 14
0.050 to 0.2
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 81.5 to 88.3
0 to 0.4
Magnesium (Mg), % 0
4.7 to 5.5
Manganese (Mn), % 0 to 1.0
0.5 to 1.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0 to 0.25
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15