MakeItFrom.com
Menu (ESC)

ACI-ASTM CA40 Steel vs. 6351 Aluminum

ACI-ASTM CA40 steel belongs to the iron alloys classification, while 6351 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CA40 steel and the bottom bar is 6351 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 10
7.8 to 18
Fatigue Strength, MPa 460
79 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 910
140 to 310
Tensile Strength: Yield (Proof), MPa 860
95 to 270

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 750
160
Melting Completion (Liquidus), °C 1440
650
Melting Onset (Solidus), °C 1500
570
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 25
180
Thermal Expansion, µm/m-K 10
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
46
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
150

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.0
8.3
Embodied Energy, MJ/kg 28
150
Embodied Water, L/kg 100
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
20 to 38
Resilience: Unit (Modulus of Resilience), kJ/m3 1910
65 to 540
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 33
14 to 32
Strength to Weight: Bending, points 27
22 to 38
Thermal Diffusivity, mm2/s 6.7
72
Thermal Shock Resistance, points 33
6.1 to 14

Alloy Composition

Aluminum (Al), % 0
96 to 98.5
Carbon (C), % 0.2 to 0.4
0
Chromium (Cr), % 11.5 to 14
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 81.5 to 88.3
0 to 0.5
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 0 to 1.0
0.4 to 0.8
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0.7 to 1.3
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15