MakeItFrom.com
Menu (ESC)

ACI-ASTM CA40 Steel vs. ASTM A182 Grade F911

Both ACI-ASTM CA40 steel and ASTM A182 grade F911 are iron alloys. They have a very high 95% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA40 steel and the bottom bar is ASTM A182 grade F911.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 310
220
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 10
20
Fatigue Strength, MPa 460
350
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Tensile Strength: Ultimate (UTS), MPa 910
690
Tensile Strength: Yield (Proof), MPa 860
500

Thermal Properties

Latent Heat of Fusion, J/g 280
270
Maximum Temperature: Mechanical, °C 750
600
Melting Completion (Liquidus), °C 1440
1480
Melting Onset (Solidus), °C 1500
1440
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
26
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
9.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
10

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
9.5
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.0
2.8
Embodied Energy, MJ/kg 28
40
Embodied Water, L/kg 100
90

Common Calculations

PREN (Pitting Resistance) 14
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
130
Resilience: Unit (Modulus of Resilience), kJ/m3 1910
650
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 33
24
Strength to Weight: Bending, points 27
22
Thermal Diffusivity, mm2/s 6.7
6.9
Thermal Shock Resistance, points 33
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.00030 to 0.0060
Carbon (C), % 0.2 to 0.4
0.090 to 0.13
Chromium (Cr), % 11.5 to 14
8.5 to 9.5
Iron (Fe), % 81.5 to 88.3
86.2 to 88.9
Manganese (Mn), % 0 to 1.0
0.3 to 0.6
Molybdenum (Mo), % 0 to 0.5
0.9 to 1.1
Nickel (Ni), % 0 to 1.0
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.040 to 0.090
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.5
0.1 to 0.5
Sulfur (S), % 0 to 0.040
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
0.9 to 1.1
Vanadium (V), % 0
0.18 to 0.25
Zirconium (Zr), % 0
0 to 0.010