MakeItFrom.com
Menu (ESC)

ACI-ASTM CA40 Steel vs. EN 1.4523 Stainless Steel

Both ACI-ASTM CA40 steel and EN 1.4523 stainless steel are iron alloys. They have a moderately high 92% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA40 steel and the bottom bar is EN 1.4523 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 310
180
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 10
17
Fatigue Strength, MPa 460
190
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
78
Tensile Strength: Ultimate (UTS), MPa 910
520
Tensile Strength: Yield (Proof), MPa 860
320

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 390
500
Maximum Temperature: Mechanical, °C 750
920
Melting Completion (Liquidus), °C 1440
1450
Melting Onset (Solidus), °C 1500
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
22
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
12
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.0
2.9
Embodied Energy, MJ/kg 28
40
Embodied Water, L/kg 100
130

Common Calculations

PREN (Pitting Resistance) 14
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
77
Resilience: Unit (Modulus of Resilience), kJ/m3 1910
260
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 33
18
Strength to Weight: Bending, points 27
18
Thermal Diffusivity, mm2/s 6.7
5.8
Thermal Shock Resistance, points 33
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0.2 to 0.4
0 to 0.030
Chromium (Cr), % 11.5 to 14
17.5 to 19
Iron (Fe), % 81.5 to 88.3
75.7 to 80.2
Manganese (Mn), % 0 to 1.0
0 to 0.5
Molybdenum (Mo), % 0 to 0.5
2.0 to 2.5
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.5
0 to 1.0
Sulfur (S), % 0 to 0.040
0.15 to 0.35
Titanium (Ti), % 0
0.15 to 0.8