MakeItFrom.com
Menu (ESC)

ACI-ASTM CA40 Steel vs. S44330 Stainless Steel

Both ACI-ASTM CA40 steel and S44330 stainless steel are iron alloys. They have 90% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA40 steel and the bottom bar is S44330 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 310
160
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 10
25
Fatigue Strength, MPa 460
160
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 76
78
Tensile Strength: Ultimate (UTS), MPa 910
440
Tensile Strength: Yield (Proof), MPa 860
230

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 390
560
Maximum Temperature: Mechanical, °C 750
990
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1500
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
21
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
13
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.0
2.8
Embodied Energy, MJ/kg 28
40
Embodied Water, L/kg 100
140

Common Calculations

PREN (Pitting Resistance) 14
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
91
Resilience: Unit (Modulus of Resilience), kJ/m3 1910
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 33
16
Strength to Weight: Bending, points 27
17
Thermal Diffusivity, mm2/s 6.7
5.7
Thermal Shock Resistance, points 33
16

Alloy Composition

Carbon (C), % 0.2 to 0.4
0 to 0.025
Chromium (Cr), % 11.5 to 14
20 to 23
Copper (Cu), % 0
0.3 to 0.8
Iron (Fe), % 81.5 to 88.3
72.5 to 79.7
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.0
0
Niobium (Nb), % 0
0 to 0.8
Nitrogen (N), % 0
0 to 0.025
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.5
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.030
Titanium (Ti), % 0
0 to 0.8