MakeItFrom.com
Menu (ESC)

ACI-ASTM CA40 Steel vs. S44535 Stainless Steel

Both ACI-ASTM CA40 steel and S44535 stainless steel are iron alloys. They have 90% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA40 steel and the bottom bar is S44535 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 310
170
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 10
28
Fatigue Strength, MPa 460
210
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 76
78
Tensile Strength: Ultimate (UTS), MPa 910
450
Tensile Strength: Yield (Proof), MPa 860
290

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 390
450
Maximum Temperature: Mechanical, °C 750
1000
Melting Completion (Liquidus), °C 1440
1430
Melting Onset (Solidus), °C 1500
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
21
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
11
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.0
2.4
Embodied Energy, MJ/kg 28
34
Embodied Water, L/kg 100
140

Common Calculations

PREN (Pitting Resistance) 14
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1910
200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 33
16
Strength to Weight: Bending, points 27
17
Thermal Diffusivity, mm2/s 6.7
5.6
Thermal Shock Resistance, points 33
15

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0.2 to 0.4
0 to 0.030
Chromium (Cr), % 11.5 to 14
20 to 24
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 81.5 to 88.3
73.2 to 79.6
Lanthanum (La), % 0
0.040 to 0.2
Manganese (Mn), % 0 to 1.0
0.3 to 0.8
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 1.5
0 to 0.5
Sulfur (S), % 0 to 0.040
0 to 0.020
Titanium (Ti), % 0
0.030 to 0.2