MakeItFrom.com
Menu (ESC)

ACI-ASTM CA40F Steel vs. 1050A Aluminum

ACI-ASTM CA40F steel belongs to the iron alloys classification, while 1050A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CA40F steel and the bottom bar is 1050A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
20 to 45
Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 13
1.1 to 33
Fatigue Strength, MPa 320
22 to 55
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 770
68 to 170
Tensile Strength: Yield (Proof), MPa 550
22 to 150

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Maximum Temperature: Mechanical, °C 750
170
Melting Completion (Liquidus), °C 1430
660
Melting Onset (Solidus), °C 1390
650
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 27
230
Thermal Expansion, µm/m-K 10
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
59
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
200

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
9.0
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.0
8.2
Embodied Energy, MJ/kg 28
150
Embodied Water, L/kg 100
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
1.9 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 790
3.7 to 160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 28
6.9 to 18
Strength to Weight: Bending, points 24
14 to 25
Thermal Diffusivity, mm2/s 7.2
94
Thermal Shock Resistance, points 28
3.0 to 7.6

Alloy Composition

Aluminum (Al), % 0
99.5 to 100
Carbon (C), % 0.2 to 0.4
0
Chromium (Cr), % 11.5 to 14
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 81.6 to 88.3
0 to 0.4
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0 to 0.050
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0 to 0.25
Sulfur (S), % 0.2 to 0.4
0
Titanium (Ti), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.070