MakeItFrom.com
Menu (ESC)

ACI-ASTM CA40F Steel vs. 535.0 Aluminum

ACI-ASTM CA40F steel belongs to the iron alloys classification, while 535.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CA40F steel and the bottom bar is 535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
70
Elastic (Young's, Tensile) Modulus, GPa 190
67
Elongation at Break, % 13
10
Fatigue Strength, MPa 320
70
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
25
Tensile Strength: Ultimate (UTS), MPa 770
270
Tensile Strength: Yield (Proof), MPa 550
140

Thermal Properties

Latent Heat of Fusion, J/g 280
390
Maximum Temperature: Mechanical, °C 750
170
Melting Completion (Liquidus), °C 1430
630
Melting Onset (Solidus), °C 1390
570
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 27
100
Thermal Expansion, µm/m-K 10
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
23
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
79

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
9.5
Density, g/cm3 7.7
2.6
Embodied Carbon, kg CO2/kg material 2.0
9.4
Embodied Energy, MJ/kg 28
160
Embodied Water, L/kg 100
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
24
Resilience: Unit (Modulus of Resilience), kJ/m3 790
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 28
28
Strength to Weight: Bending, points 24
35
Thermal Diffusivity, mm2/s 7.2
42
Thermal Shock Resistance, points 28
12

Alloy Composition

Aluminum (Al), % 0
91.5 to 93.6
Beryllium (Be), % 0
0.0030 to 0.0070
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0.2 to 0.4
0
Chromium (Cr), % 11.5 to 14
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 81.6 to 88.3
0 to 0.15
Magnesium (Mg), % 0
6.2 to 7.5
Manganese (Mn), % 0 to 1.0
0.1 to 0.25
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0 to 0.15
Sulfur (S), % 0.2 to 0.4
0
Titanium (Ti), % 0
0.1 to 0.25
Residuals, % 0
0 to 0.15