MakeItFrom.com
Menu (ESC)

ACI-ASTM CA40F Steel vs. EN AC-45500 Aluminum

ACI-ASTM CA40F steel belongs to the iron alloys classification, while EN AC-45500 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CA40F steel and the bottom bar is EN AC-45500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
110
Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 13
2.8
Fatigue Strength, MPa 320
80
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 770
320
Tensile Strength: Yield (Proof), MPa 550
250

Thermal Properties

Latent Heat of Fusion, J/g 280
500
Maximum Temperature: Mechanical, °C 750
170
Melting Completion (Liquidus), °C 1430
610
Melting Onset (Solidus), °C 1390
600
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 27
150
Thermal Expansion, µm/m-K 10
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
33
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
110

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
9.5
Density, g/cm3 7.7
2.6
Embodied Carbon, kg CO2/kg material 2.0
8.0
Embodied Energy, MJ/kg 28
150
Embodied Water, L/kg 100
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
8.2
Resilience: Unit (Modulus of Resilience), kJ/m3 790
430
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 28
34
Strength to Weight: Bending, points 24
40
Thermal Diffusivity, mm2/s 7.2
65
Thermal Shock Resistance, points 28
15

Alloy Composition

Aluminum (Al), % 0
90.6 to 93.1
Carbon (C), % 0.2 to 0.4
0
Chromium (Cr), % 11.5 to 14
0
Copper (Cu), % 0
0.2 to 0.7
Iron (Fe), % 81.6 to 88.3
0 to 0.25
Magnesium (Mg), % 0
0.2 to 0.45
Manganese (Mn), % 0 to 1.0
0 to 0.15
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
6.5 to 7.5
Sulfur (S), % 0.2 to 0.4
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1