MakeItFrom.com
Menu (ESC)

ACI-ASTM CA40F Steel vs. Grade 6 Titanium

ACI-ASTM CA40F steel belongs to the iron alloys classification, while grade 6 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA40F steel and the bottom bar is grade 6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 13
11
Fatigue Strength, MPa 320
290
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
39
Tensile Strength: Ultimate (UTS), MPa 770
890
Tensile Strength: Yield (Proof), MPa 550
840

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 750
310
Melting Completion (Liquidus), °C 1430
1580
Melting Onset (Solidus), °C 1390
1530
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 27
7.8
Thermal Expansion, µm/m-K 10
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
36
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 2.0
30
Embodied Energy, MJ/kg 28
480
Embodied Water, L/kg 100
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
92
Resilience: Unit (Modulus of Resilience), kJ/m3 790
3390
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 28
55
Strength to Weight: Bending, points 24
46
Thermal Diffusivity, mm2/s 7.2
3.2
Thermal Shock Resistance, points 28
65

Alloy Composition

Aluminum (Al), % 0
4.0 to 6.0
Carbon (C), % 0.2 to 0.4
0 to 0.080
Chromium (Cr), % 11.5 to 14
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 81.6 to 88.3
0 to 0.5
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0
Sulfur (S), % 0.2 to 0.4
0
Tin (Sn), % 0
2.0 to 3.0
Titanium (Ti), % 0
89.8 to 94
Residuals, % 0
0 to 0.4