MakeItFrom.com
Menu (ESC)

ACI-ASTM CA40F Steel vs. C86700 Bronze

ACI-ASTM CA40F steel belongs to the iron alloys classification, while C86700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA40F steel and the bottom bar is C86700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 13
17
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
41
Tensile Strength: Ultimate (UTS), MPa 770
630
Tensile Strength: Yield (Proof), MPa 550
250

Thermal Properties

Latent Heat of Fusion, J/g 280
180
Maximum Temperature: Mechanical, °C 750
130
Melting Completion (Liquidus), °C 1430
880
Melting Onset (Solidus), °C 1390
860
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 27
89
Thermal Expansion, µm/m-K 10
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
17
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
19

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
23
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.0
2.9
Embodied Energy, MJ/kg 28
49
Embodied Water, L/kg 100
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
86
Resilience: Unit (Modulus of Resilience), kJ/m3 790
290
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 28
22
Strength to Weight: Bending, points 24
21
Thermal Diffusivity, mm2/s 7.2
28
Thermal Shock Resistance, points 28
21

Alloy Composition

Aluminum (Al), % 0
1.0 to 3.0
Carbon (C), % 0.2 to 0.4
0
Chromium (Cr), % 11.5 to 14
0
Copper (Cu), % 0
55 to 60
Iron (Fe), % 81.6 to 88.3
1.0 to 3.0
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 0 to 1.0
1.0 to 3.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0
Sulfur (S), % 0.2 to 0.4
0
Tin (Sn), % 0
0 to 1.5
Zinc (Zn), % 0
30 to 38
Residuals, % 0
0 to 1.0