MakeItFrom.com
Menu (ESC)

ACI-ASTM CA6N Steel vs. 5086 Aluminum

ACI-ASTM CA6N steel belongs to the iron alloys classification, while 5086 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CA6N steel and the bottom bar is 5086 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 17
1.7 to 20
Fatigue Strength, MPa 640
88 to 180
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Tensile Strength: Ultimate (UTS), MPa 1080
270 to 390
Tensile Strength: Yield (Proof), MPa 1060
110 to 320

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Maximum Temperature: Corrosion, °C 390
65
Maximum Temperature: Mechanical, °C 740
190
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1400
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 23
130
Thermal Expansion, µm/m-K 9.9
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
31
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
100

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 2.5
8.8
Embodied Energy, MJ/kg 35
150
Embodied Water, L/kg 110
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
5.8 to 42
Resilience: Unit (Modulus of Resilience), kJ/m3 2900
86 to 770
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 38
28 to 40
Strength to Weight: Bending, points 30
34 to 44
Thermal Diffusivity, mm2/s 6.1
52
Thermal Shock Resistance, points 40
12 to 17

Alloy Composition

Aluminum (Al), % 0
93 to 96.3
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 10.5 to 12.5
0.050 to 0.25
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 77.9 to 83.5
0 to 0.5
Magnesium (Mg), % 0
3.5 to 4.5
Manganese (Mn), % 0 to 0.5
0.2 to 0.7
Nickel (Ni), % 6.0 to 8.0
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15