MakeItFrom.com
Menu (ESC)

ACI-ASTM CA6N Steel vs. EN AC-21200 Aluminum

ACI-ASTM CA6N steel belongs to the iron alloys classification, while EN AC-21200 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CA6N steel and the bottom bar is EN AC-21200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 17
3.9 to 6.2
Fatigue Strength, MPa 640
110 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
27
Tensile Strength: Ultimate (UTS), MPa 1080
410 to 440
Tensile Strength: Yield (Proof), MPa 1060
270 to 360

Thermal Properties

Latent Heat of Fusion, J/g 280
390
Maximum Temperature: Mechanical, °C 740
170
Melting Completion (Liquidus), °C 1440
660
Melting Onset (Solidus), °C 1400
550
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 23
130
Thermal Expansion, µm/m-K 9.9
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
34
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
100

Otherwise Unclassified Properties

Base Metal Price, % relative 11
10
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 2.5
8.0
Embodied Energy, MJ/kg 35
150
Embodied Water, L/kg 110
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
16 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 2900
500 to 930
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 38
38 to 40
Strength to Weight: Bending, points 30
41 to 43
Thermal Diffusivity, mm2/s 6.1
49
Thermal Shock Resistance, points 40
18 to 19

Alloy Composition

Aluminum (Al), % 0
93.3 to 95.7
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 10.5 to 12.5
0
Copper (Cu), % 0
4.0 to 5.0
Iron (Fe), % 77.9 to 83.5
0 to 0.2
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0
0.15 to 0.5
Manganese (Mn), % 0 to 0.5
0.2 to 0.5
Nickel (Ni), % 6.0 to 8.0
0 to 0.050
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.1