MakeItFrom.com
Menu (ESC)

ACI-ASTM CA6N Steel vs. EN AC-42100 Aluminum

ACI-ASTM CA6N steel belongs to the iron alloys classification, while EN AC-42100 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CA6N steel and the bottom bar is EN AC-42100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 17
3.4 to 9.0
Fatigue Strength, MPa 640
76 to 82
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Tensile Strength: Ultimate (UTS), MPa 1080
280 to 290
Tensile Strength: Yield (Proof), MPa 1060
210 to 230

Thermal Properties

Latent Heat of Fusion, J/g 280
500
Maximum Temperature: Mechanical, °C 740
170
Melting Completion (Liquidus), °C 1440
610
Melting Onset (Solidus), °C 1400
600
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 23
150
Thermal Expansion, µm/m-K 9.9
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
41
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
140

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 2.5
8.0
Embodied Energy, MJ/kg 35
150
Embodied Water, L/kg 110
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
9.1 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 2900
300 to 370
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 38
30 to 31
Strength to Weight: Bending, points 30
37 to 38
Thermal Diffusivity, mm2/s 6.1
66
Thermal Shock Resistance, points 40
13

Alloy Composition

Aluminum (Al), % 0
91.3 to 93.3
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 10.5 to 12.5
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 77.9 to 83.5
0 to 0.19
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0 to 0.5
0 to 0.1
Nickel (Ni), % 6.0 to 8.0
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
6.5 to 7.5
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1