MakeItFrom.com
Menu (ESC)

ACI-ASTM CA6N Steel vs. C42500 Brass

ACI-ASTM CA6N steel belongs to the iron alloys classification, while C42500 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA6N steel and the bottom bar is C42500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17
2.0 to 49
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
42
Tensile Strength: Ultimate (UTS), MPa 1080
310 to 630
Tensile Strength: Yield (Proof), MPa 1060
120 to 590

Thermal Properties

Latent Heat of Fusion, J/g 280
200
Maximum Temperature: Mechanical, °C 740
180
Melting Completion (Liquidus), °C 1440
1030
Melting Onset (Solidus), °C 1400
1010
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 23
120
Thermal Expansion, µm/m-K 9.9
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
28
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
29

Otherwise Unclassified Properties

Base Metal Price, % relative 11
30
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 2.5
2.8
Embodied Energy, MJ/kg 35
46
Embodied Water, L/kg 110
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
12 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 2900
64 to 1570
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 38
9.9 to 20
Strength to Weight: Bending, points 30
12 to 19
Thermal Diffusivity, mm2/s 6.1
36
Thermal Shock Resistance, points 40
11 to 22

Alloy Composition

Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 10.5 to 12.5
0
Copper (Cu), % 0
87 to 90
Iron (Fe), % 77.9 to 83.5
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 6.0 to 8.0
0
Phosphorus (P), % 0 to 0.020
0 to 0.35
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
1.5 to 3.0
Zinc (Zn), % 0
6.1 to 11.5
Residuals, % 0
0 to 0.5