MakeItFrom.com
Menu (ESC)

ACI-ASTM CA6N Steel vs. C42600 Brass

ACI-ASTM CA6N steel belongs to the iron alloys classification, while C42600 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA6N steel and the bottom bar is C42600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17
1.1 to 40
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
42
Tensile Strength: Ultimate (UTS), MPa 1080
410 to 830
Tensile Strength: Yield (Proof), MPa 1060
220 to 810

Thermal Properties

Latent Heat of Fusion, J/g 280
200
Maximum Temperature: Mechanical, °C 740
180
Melting Completion (Liquidus), °C 1440
1030
Melting Onset (Solidus), °C 1400
1010
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 23
110
Thermal Expansion, µm/m-K 9.9
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
25
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
26

Otherwise Unclassified Properties

Base Metal Price, % relative 11
31
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 2.5
2.9
Embodied Energy, MJ/kg 35
48
Embodied Water, L/kg 110
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
9.4 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 2900
230 to 2970
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 38
13 to 27
Strength to Weight: Bending, points 30
14 to 23
Thermal Diffusivity, mm2/s 6.1
33
Thermal Shock Resistance, points 40
15 to 29

Alloy Composition

Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 10.5 to 12.5
0
Copper (Cu), % 0
87 to 90
Iron (Fe), % 77.9 to 83.5
0.050 to 0.2
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 6.0 to 8.0
0.050 to 0.2
Phosphorus (P), % 0 to 0.020
0.020 to 0.050
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
2.5 to 4.0
Zinc (Zn), % 0
5.3 to 10.4
Residuals, % 0
0 to 0.2