MakeItFrom.com
Menu (ESC)

ACI-ASTM CA6N Steel vs. C82700 Copper

ACI-ASTM CA6N steel belongs to the iron alloys classification, while C82700 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA6N steel and the bottom bar is C82700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 17
1.8
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
46
Tensile Strength: Ultimate (UTS), MPa 1080
1200
Tensile Strength: Yield (Proof), MPa 1060
1020

Thermal Properties

Latent Heat of Fusion, J/g 280
240
Maximum Temperature: Mechanical, °C 740
300
Melting Completion (Liquidus), °C 1440
950
Melting Onset (Solidus), °C 1400
860
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 23
130
Thermal Expansion, µm/m-K 9.9
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
20
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
21

Otherwise Unclassified Properties

Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 2.5
12
Embodied Energy, MJ/kg 35
180
Embodied Water, L/kg 110
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
21
Resilience: Unit (Modulus of Resilience), kJ/m3 2900
4260
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 38
38
Strength to Weight: Bending, points 30
29
Thermal Diffusivity, mm2/s 6.1
39
Thermal Shock Resistance, points 40
41

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
2.4 to 2.6
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 10.5 to 12.5
0 to 0.090
Copper (Cu), % 0
94.6 to 96.7
Iron (Fe), % 77.9 to 83.5
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 6.0 to 8.0
1.0 to 1.5
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5